The Dynamics of Structured Populations

by Odo Diekmann

Physiological processes within individuals and behavioural patterns
displayed by individuals are some of the subjects studied by biologists.
Matters like growth, the succession of larval stages and reproduction are
pieces of a sometimes remarkably complicated jig-saw puzzle called the life
cycle.

On the other hand biologists also study the past and present state of large
populations and try to predict their future development by calculating how
the number of individuals changes as a consequence of reproduction and
interaction (for example, competition for food).

Structured population models are intended to bridge the gap between the
individual and the population level. The aim is to derive information about
the dynamics of the population from information about the dynamics of the
individuals or vice versa (cf. [1]).

The following three examples illustrate some of the main ideas.

1. If a predator eats (too) much prey he is not hungry any more and he
will hunt with less zeal. Thus one expects that the functional response F (i.e.,
the number of prey eaten per predator per unit of time as a function of the
prey density x) will be given by a graph as shown in Figure 1.
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Figure 1.
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Assuming that the state of each predator can be completely characterized by
its satiation s =0 (i.e., some measure for the contents of stomach and gut) the
population can be described by the satiation-density function s—n(t, s)

5
depending on time ¢. Thus j; 12n (¢, s)ds represents the number of predators

with satiation between s, and s, at time .
One can then derive the following equation:
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The first term at the right hand side describes the changes due to digestion
(with rate g(s)), and the second term describes changes due to the consump-
tion of preys of constant weight w which are caught with rate xb(s). Han-
dling times and changes in prey density x are neglected here because of
differences in time-scale: prey capture and digestion are fast processes com-
pared with reproduction, and slow processes compared with the actual han-
dling of the prey.

As t—o0 the solution approaches a stable distribution 7 (s) and the func-
tional response is explicitly given by

F(x)=x {g(s)n‘(s)ds‘.

Numerical calculations based on this formula confirm the qualitative form of
Figure 1. Moreover, one can use experimental measurements ofg and b to
determine F quantitatively and subsequently use the result as an input for a
prey-predator total population model at the time-scale of reproduction. We
refer to [2] for further details.

2. Consider a population of unicellular organisms (bacteria or algae) and
assume that the physiological state of an arbitrary cell is completely
described by one quantity x which obeys a physical conservation law (for

example, total mass or the amount of nitrogen atoms in the cell). We shall
call x ‘size’. Furthermore, assume that cells reproduce by binary fission into
two exactly equal daughters. The balance of growth, death and division
(with rates g, p and b, respectively) leads to the equation

g—': t,x)=— 51— @GN, x)—pIn@, x)—b(x)n(t, x)+4b(2x)n(t, 2x),

which shows marked mathematical similarities to the equation in the first
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example. It turns out that the existence of a stable distribution hinges on the
biologically interpretable condition that x —»g(2x) and x—2 g(x) are not
identical.

Density dependence (as a consequence of limited resources) can be incor-
porated by specifying how g depends on the available nutrients and how,
conversely, the food supply is influenced by consumption. References [3] are
an elaborate presentation of this example.

3. Predators may prefer mature prey above young prey or they may, on
the contrary, eat only eggs. Individuals of many species change their diet at
various stages in the life cycle and thus one may have to distinguish the

cannibalism
o) growth Ogroul h Osrouth Q

predator according to its maturity. Cannibalism seems to be a major regulat-
ing mechanism for many species. In all of these situations one needs a popu-
lation structure (in terms of age, size, larval stadia ...) in order to describe the
interaction properly. See [4] for some models and results.

reproduction

The first step in building these models consists of finding a suitable explicit
parametrization of the state of the individuals (satiation, size, age, ...). The
state of the population is then given by the density function n describing the
distribution in the individual state space.

In the course of time the state of each specific individual changes (owing
to digestion, growth, aging, ..). Moreover, individuals are born and die.
(These words have to be interpreted broadly: in the first example a predator
which consumes a prey “dies” while at the same time a new predator with w
added to the satiation “is born”.) In the second step one draws up the bal-
ance of these processes to derive a (first order partial) differential equation
for the infinitesimal change in the population state. The coefficients in the
equation describe the functioning and the behaviour of the individuals but
the solution describes (properties of) the population as a whole. Starting
from biological knowledge one can incorporate the interaction of the popula-
tion ang its environment (including other populations) by specifying in detail
how the birth, death and growth processes depend on environmental
quantities. Thus, as a rule, the equations become nonlinear.

When suitable boundary conditions are added, an initial condition
n(0,x) = ¢(x) at =0 singles out a unique solution n(t, x;¢). It is
mathematically convenient to conceive of ¢ and n (¢, ;¢) as elements of a
function space X (such as L, or C) and to write

n(t, ;9) = SO ¢
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The family {S(¢)};>o forms a semigroup of (continuous) mappings from X
into X (i.e., S(0)=1 and S(#,) S(t))=S(t,+13), t1,t,=>0) such that the bal-
ance equation can be interpreted as

dn
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with 4 the infinitesimal generator of {S(z)},50. Thus, these problems fit into
the general framework of dynamical systems on infinite dimensional spaces
[5,6]. An important special feature of these population models is the
occurrence of non-local terms (such as the ones with the transformed argu-
ments s —w and 2x) and this gives the problems a certain flavour reminis-
cent of functional differential equations, see [8].

The linear theory of stable distributions is based on positivity (Krein-
Rutman Theorem) and on compactness arguments [2,3). The qualitative
theory of nonlinear age-structured models has developed rather rapidly in
recent years [4,7]. For the general case hardly any work on nonlinear prob-
lems has been done. The objective of the project ‘Dynamics of structured
populations’ at CWI is to develop parts of a qualitative theory little by little,
by applying general techniques, such as bifurcation theory [9], to concrete
problems in this area.

A recent colloquium at CWI has brought about cooperation with several
biologists. Team-work has produced a set of examples (such as the ones
above) which are as simple as possible but yet biologically relevant. Their
mathematical analysis is now in progress. Step by step complexity and real-
ism will be built up in the hope that eventually a coherent general theory will
arise.
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